

WELCOME! The webinar will begin shortly.

A recording of the webinar and the slides will be available afterwards.

FIND OUT HOW TO REPLACE "DIFFICULT" PFAS USES WITH SAFER ALTERNATIVES

ChemSec, 19 June 2023

FIND OUT HOW TO REPLACE "DIFFICULT" PFAS USES WITH SAFER ALTERNATIVES

ChemSec, 19 June 2023

- Introduction to ChemSec
- Smorgasbord of PFAS alternatives
 - Technical textiles
 - Alternatives to **F-gases**
 - Semiconductor manufacturing
 - Green energy solutions
- Questions use the Q&A function!

INNOVATIONS


TRANSENE

Slides and recording will be available afterwards

sympatex ®

ATMO sphere

WHAT WE DO AT CHEMSEC

- Drive the political discussion on hazardous chemicals
- Challenge companies to improve their chemicals management
- Develop online tools to help companies switch to safer chemicals
- Inform investors about risks and opportunities in the chemical industry

19 June 2023 | ionomr.com 0 0 0

Breakthrough Hydrocarbon Materials for the Energy Transformation

Founded 2018

50 Employees

\$30M+ USD Funding

Two Breakthrough Materials Families

Company Overview

Ionomr – the leader in next-gen ion-exchange materials

Diverse Marketplace

Hydrogen Production, Fuel Cells & CCUS

Industry Experts

Supported by more than 10 years / 100K hours of R&D

Innovative 50-year breakthroughs in both AEM and PEM solutions **Protected IP** Broad patent portfolio: material, process, composite, device

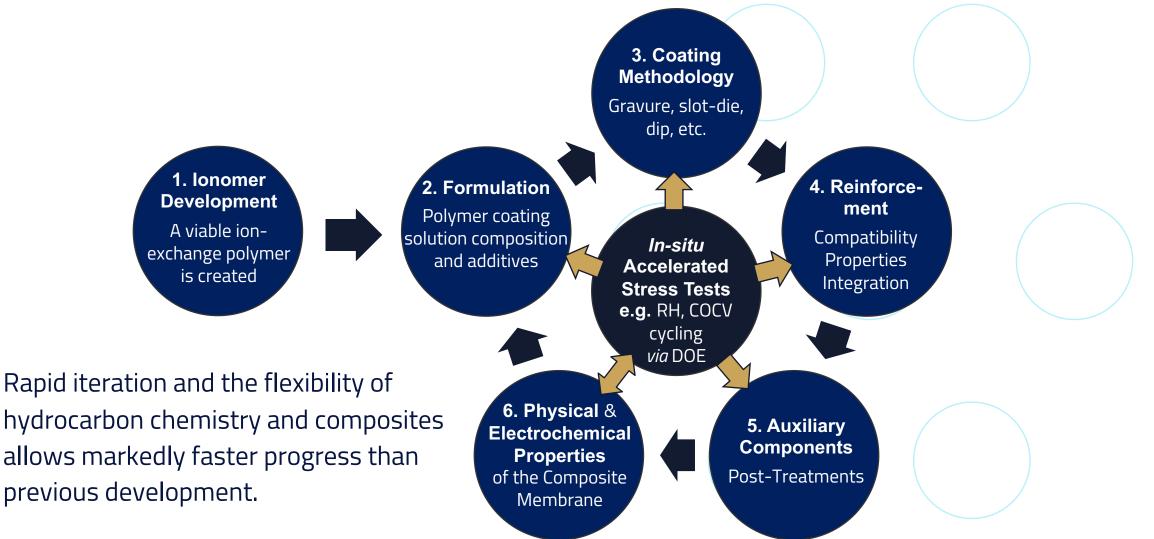
Selected Recognition

• 7 •

Electrochemistry Needs Advanced Membranes ELECTROLYZERS FUEL CELLS Hydrogen Out Air In Oxygen Out Hydrogenin (он-) H+ OH-H+ онн+ он-H+ 0 0 OH-H+ Anode Anode Membrane Membrane Cathode Cathode Steel End Plate Steel End Plate Water In Water Out Water In

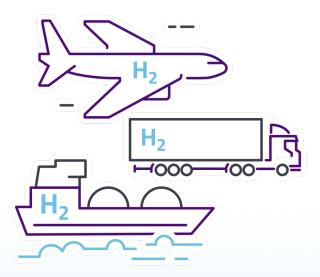
The ion-exchange membrane defines and determines a system's **durability**, **performance** and **efficiency**.

Material Design Considerations


Ion-exchange materials have numerous interconnected properties

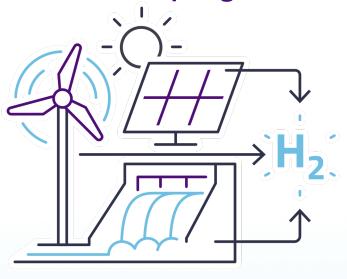
Ionomr's design experience enables creation of next-generation membranes and ionomers

- Strong emphasis on fundamental R&D and materials knowledge
- Rigorous design, development, & new product integration / characterization processes
- Each material is specifically application-designed with properties comprehensively screened prior to scale-up and pre-production release



Developing Next-Generation Materials

Ionomr's Focus Verticals


Heavy Duty Fuel Cells

Cost & Efficiency Breakthrough

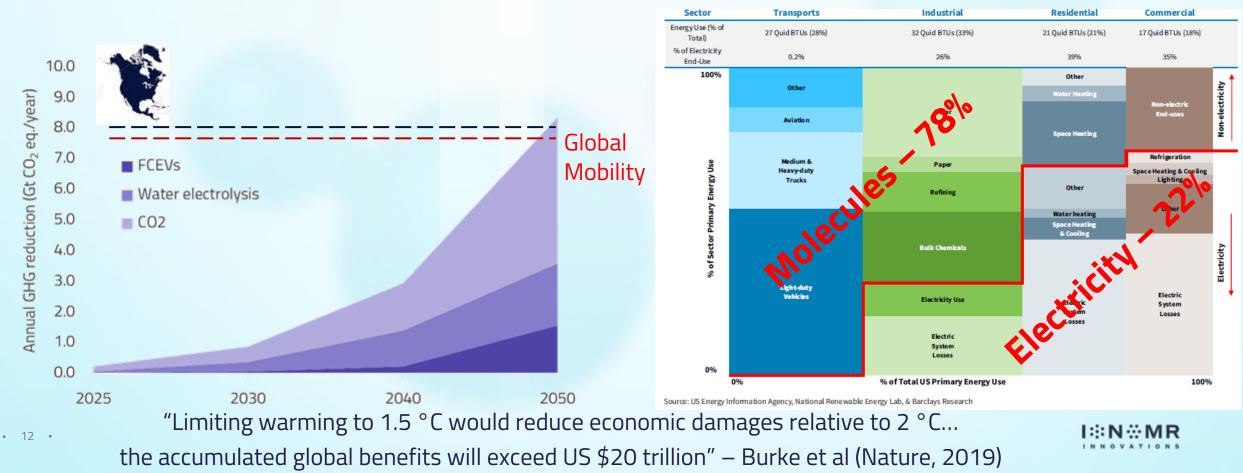
Materials exceeding world-leading performance, full-scale cells being tested & full-scale system pilots in bring-up

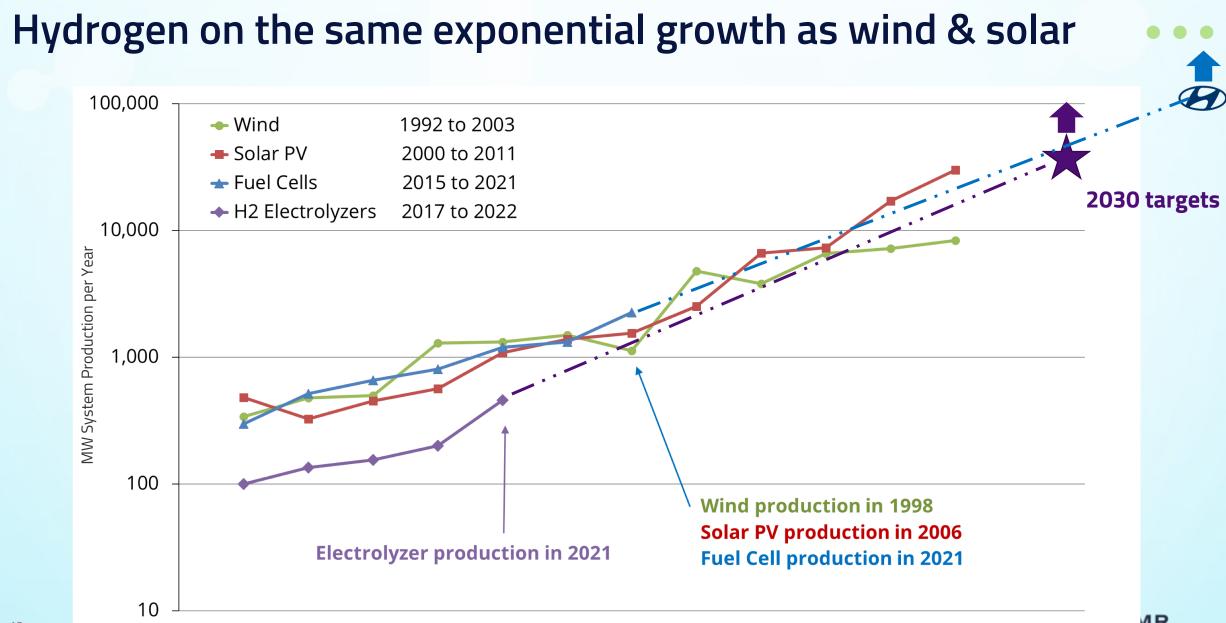
Green Hydrogen

CO₂ Capture (CCUS)

Enabling CAPEX-effective H₂

9000+ hour durability demo, >700x durability in industry-relevant conditions, whole system exceeding EU 2024 goals


Unlocking Carbon-to-Value


Numerous systems including a 3x for CO_2 -to-CO + the first/only long-lived direct conversion to high-value 'C2+'

The Urgency

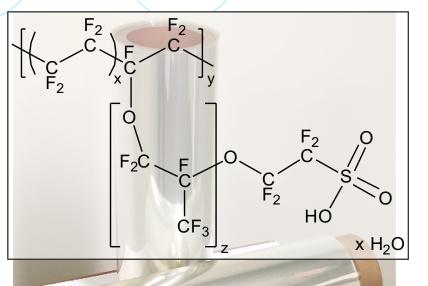
- We must decarbonize before 2050 and limit warming to <1.5 °C
- What stands in the way? Rate-limiting factors must be removed, primarily supply & grid-related issues
 - Speed, certainty, low environmental impact, & circularity are all highly valuable

• 13 •

Adapted from chart: M Klippenstein (@ElectronComm). Data: . <u>World on the Edge, Global Outlook on Photovoltaics Report 2014-2018</u>, E4Tech, Bernstein Research, BNEF. Hyundai FCEV Vision 2030 https://www.hyundai.news/eu/articles/press-releases/hyundai-motor-group-reveals-fcev-vision-2030.html

Current Ion-Exchange Materials: PFSAs

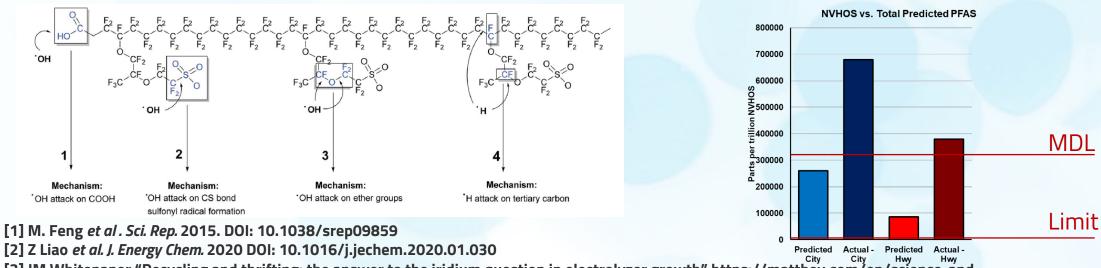
Perfluorosulfonic acid-based materials


- Archetypal Nafion[®] membranes and ionomers & short side chain (SSC) variants
- Fundamental chemistry unchanged for over 50 years

Perfluorination gives rise to advantageous properties

- Hydrophobic backbone
- Chemical stability
- Water management
- Ionic conductivity

However..


- High material costs & scalability challenges
- High gas crossover undesirable permeability of the hydrophobic region
- Growing environmental concerns & impending regulation

Use & End-of-Life

15

- In situ degradation mechanisms established theoretically & experimentally (e.g. F-release rate)
- Mitigations can be established immediately but not to ultimately acceptable levels (<1 part per trillion)
- End-of-Life thermolysis of PFSAs generate PFAS of the highest concern in meaningful abundance¹
 - Higher temperatures no panacea, also an issue in battery recycling, (e.g. LiPF6-carbonate forms at 230 °C but not at 195 °C)²
 - Environmental mobility of sulfonic acids >100,000 km & persistence >1 m.a. >100x of other still-to-be-regulated PFAS (ECHA Annex B p108ff)
 - Iridium recycling necessary for PEMWE scaling or will only achieve 10-15% of market share by 2050 (e.g. JM Whitepaper)³

[3] JM Whitepaper "Recycling and thrifting: the answer to the iridium question in electrolyzer growth" https://matthey.com/en/science-andinnovation/expert-insights/2022/recycling-and-thrifting-the-answer-to-the-iridium-question-in-electrolyser-growth [4] M Zaton, J Roziere, & DJ Jones, *RSC Sustain. Energy Fuels* 1(3) 2017.

Pemion[®] for Fuel Cells

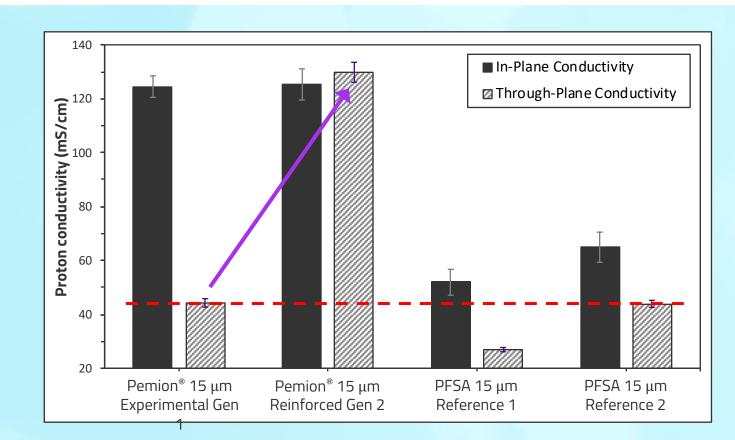
Pemion[®]: The Future of Hydrogen Fuel Cells

Unli	ke Nafion, Hydrocarbons Achieve:	Pemion®	
\bigcirc	High efficiency & high performance Increased conductivity, water transport	\checkmark	
\bigcirc	Selectivity for improved H₂ efficiency Impermeable to reactant gases (H ₂ , O ₂)	\checkmark	
\bigotimes	Extreme Durability Long lifetimes to meet HD requirements	\checkmark	
\$	Cost-effective and scalable chemistry Capable of meeting growing PEM demands	\checkmark	
	Environmentally friendly materials Green chemistry for the green revolution	\checkmark	
	High temperature stability Operation up to 120 °C for major system cost reduction, meeting long-term goals	\checkmark	

Pemion[®] – Corrects Past Shortfalls of Hydrocarbons

Historical Challenges

- Functionalization control
- Water uptake and swelling
- Solubility in hot water at high IECs
- Ketones, sulfones, & protected ethers unstable
- Sensitivity to oxidative degradation
- Incompatibility with antioxidants irreversible

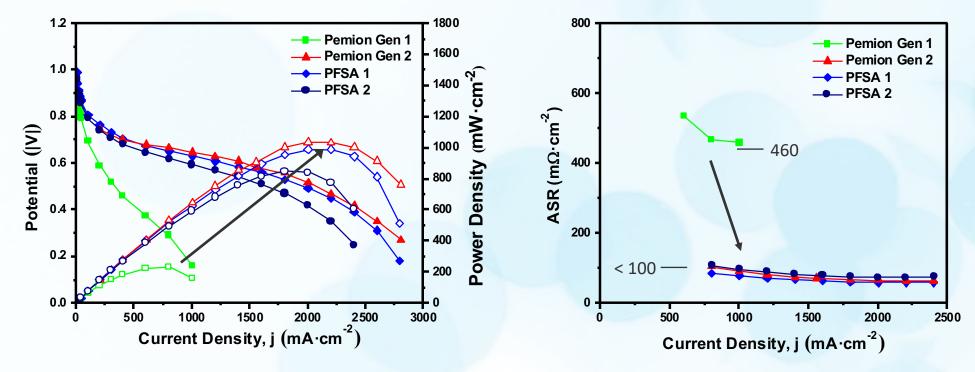

Responses

- Controlled functionalization
- Chemical strategy & down-selection/optimization limits
- Insoluble to IECs of ~4 / EWs ~250 (!)
- Zero ketones, sulfones, or ethers all sp² C & -SO₃H
- Above strategy orders-of-magnitude improvement
- Enables antioxidant compatibility reversible 1st rxn

rxn

Pemion[®] Reinforced Membranes Today

- Current generation composite membrane design yields greatly improved through-plane conductivity, eliminating anisotropy
- Higher conductivity corroborated by large *in-situ* resistance decreases
 - → Greater fuel cell efficiency & performance in all conditions



In-plane and through-plane conductivity of membranes measured at rt after soaking in liquid water (24 h)

Pemion[®] – Low-Humidity Performance

Dramatic improvements to water management and 400% higher performance over previousgeneration R2R membranes under hot/dry

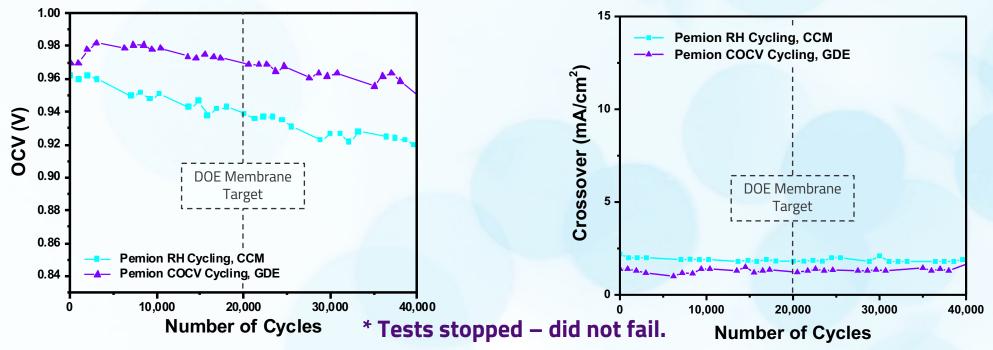
- Decreases in area resistance >75%, in-line with performance improvements
- Unprecedented (!) performance for a hydrocarbon-based polymer electrolyte membrane


Graph 4: Polarization (left) and resistance (right) curves of membranes measured under <u>30/30 %RH</u>, H₂/Air 150 kPag symmetrical, 80 °C (3 min/pt)

Ionomr Innovations Inc. – Confidential Information

Pemion[®] – Extreme Chemical Stability

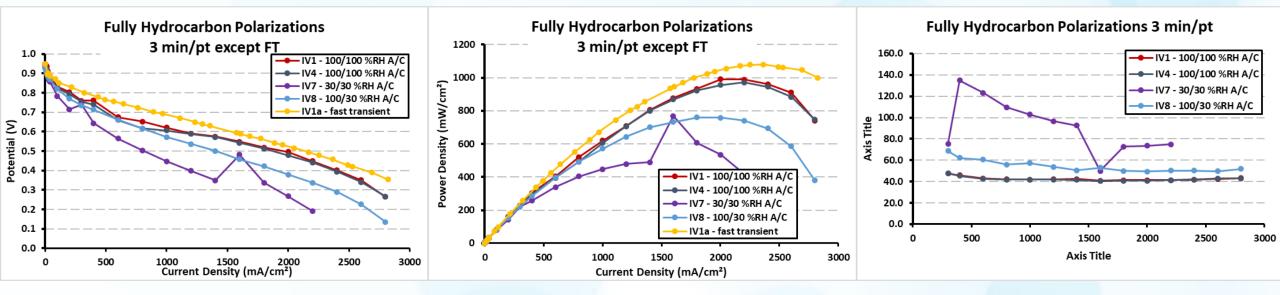
The Pemion® polymer is **inherently chemically resilient** against radical-induced degradation


- 1000 h without failure (2x DOE membrane target) **without radical scavengers**
- DOE-specified chemical stability accelerated stress test – extended hold at open circuit voltage under 30% RH, 90 °C
- Successful PEMFC operation after accelerated stress test @ ~70% of initial performance

State-of-the-Art Membrane Durability

First and only hydrocarbon-based material to ever achieve industry durability targets

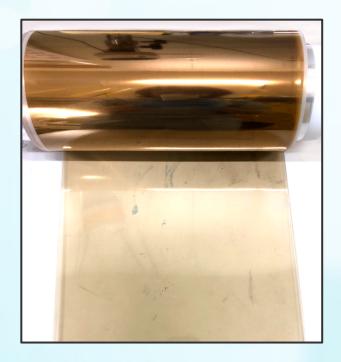
- Multiple tests showcase limited degradation across entire target timeline
- 20k cycle target achieved, and doubled, under combined chemical/mechanical (COCV cycling) via DOE protocol
- Membrane gas crossover < 1/3 PFSA membranes for life of test



OCV (left) and gas crossover current @ 100 kPag cathode, 50 kPag anode (50 kPa differential) – (right) curves of membranes measured under COCV (OCV and cycling.RH ambient to 100%) at 90 °C as well as RH cycling (OCV step added for comparison). Both methods per DOE ASTM protocols, INC. – Confidential Information

Pemion[®] – Hydrocarbon Membrane + Ionomer Performance • •

Highly preliminary data in non-optimized conditions, but performances near-parity

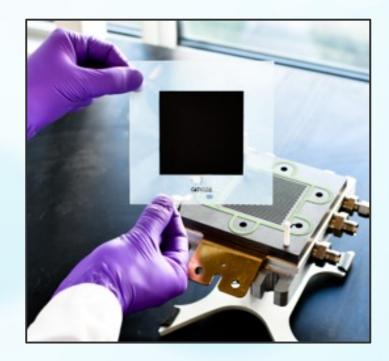

- 5 cm² active area, high stoichiometry, 80 °C, 150 kPag H₂/air backpressure, **consistent performance ~1 W/cm²**
- 0.3 mg Pt/cm² cathode / 0.1 mg Pt/cm² anode (25% lower cathode loading vs. slides 4-6), ultrasonic spray-coated
- Comparable area resistance in all conditions (~3-5 mΩ·cm² increase fully humidified, <10 mΩ·cm² dry, consistent w/ high stoichiometry & slightly thinner electrodes), comparable kinetics both high and low RH
- Fast transient quite comparable with PFSA-based results, suggests unit cell design & optimization fully effective to approximate performance parity

I:N W MR

Ionomr Innovations Inc. – Confidential Information

Pemion® Materials

Composite Membranes


PF1-HLF8-15-X Our standard reinforced membrane ("Gen 2")

Ionomer Powders

PP1-HNN8-00

Readily soluble in common low boiling point solvents

PEMFC Reference Platforms

Catalyst coated membranes & Membrane electrode assemblies

Ionomr Innovations Inc. – Confidential Information

Aemion® Electrolyzers for Capital-Efficient Green Hydrogen

I::N ☆ MR

Aemion+® Unlocks Disruptive Hydrogen Economics

· 26 · Ionomr Innovations Inc. – Confidential Information

AEMWE for the Most Cost-Effective Green H₂

Enables Cost-Effective Hydrogen

- High-performance, high-efficiency, compact systems
- Step-change in CAPEX & OPEX to meet 'hydrogen shot' \$1/kg

High electron efficiency / low hydrogen crossover

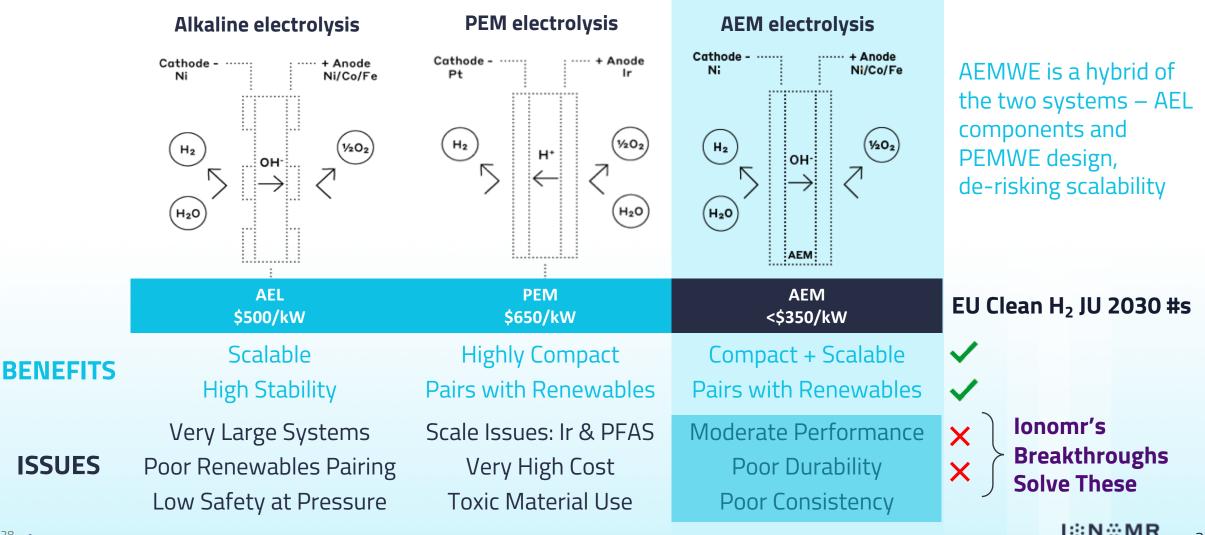
- Efficient renewable pairing
- Highest safety factor

Solved key durability challenges

- Long-lived, efficient catalysts enabled by hot caustic
- Only indefinitely stable material to meet industrial req's
- Exceeds 2024 EU targets, meeting 2030 targets

Compact, Scalable Systems

- Abundant, low-cost catalysts eliminating iridium use
- Enables scalable, low-cost alloys for system reductions
- Enables full circularity



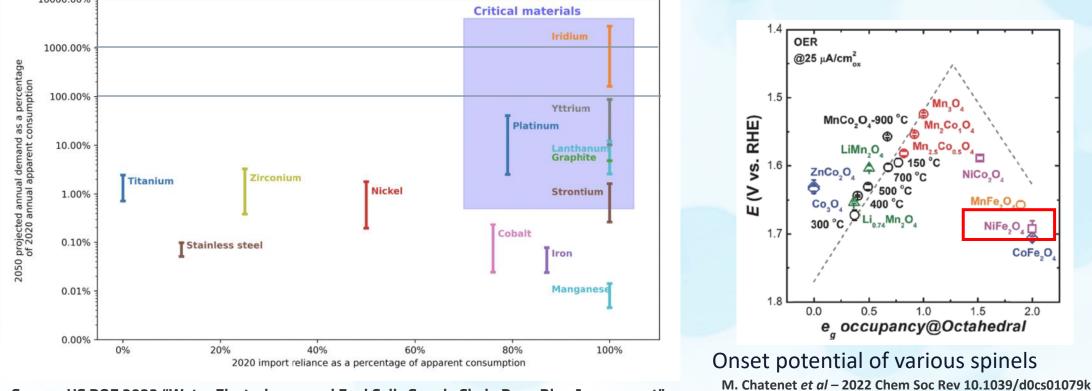
The Evolution of Water Electrolysis

1:::N …

An i	deal system exhibits:	AWE	PEM	Aemion®
(High performance = <150 mΩ·cm² area resistance Enables compact, cost-effective systems	$X \rightarrow i$	\checkmark	\checkmark
\bigcirc	Low gas permeability with variable load Safety + turn-down required for renewable pairing	!→X	\checkmark	$\checkmark\checkmark$
\bigotimes	Durability Long lifetimes to meet system requirements	\checkmark	\checkmark	\checkmark
\$	Cost-effective, scalable membrane, electrode, and stack components To enable and meet rapid market growth	\checkmark	X	$\checkmark\checkmark$
	Be made from environmentally friendly materials Meets the requirements of the circular economy	\checkmark	X	\checkmark
	High temperature & pressure stability Operation to 90 °C, ≥5 bar for large system design	!	!	\checkmark

Aemion+[®] Unlocks Disruptive Hydrogen Economics

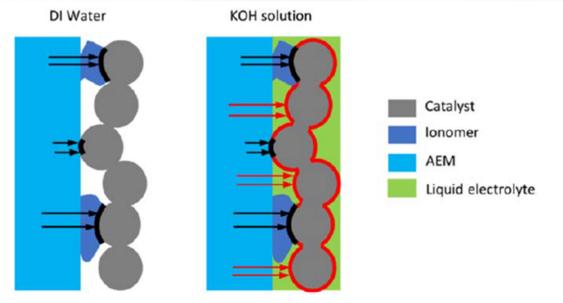
28

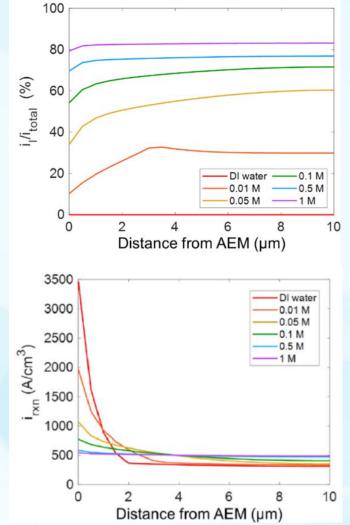

AEMWE Flexibility Only Way to Meets H₂ Shot \$1/kg by 2030

									Electricity \$/MWh							
75% CF		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
	0	\$0.21	\$0.48	\$0.75	\$1.01	\$1.28	\$1.55	\$1.81	\$2.08	\$2.35	\$2.61	\$2.88	\$3.15	\$3.41	\$3.68	\$3.95
	50	\$0.25	\$0.52	\$0.79	\$1.05	\$1.32	\$1.59	\$1.85	\$2.12	\$2.39	\$2.65	\$2.92	\$3.19	\$3.45	\$3.72	\$3.99
	100	\$0.29	\$0.56	\$0.83	\$1.09	\$1.36	\$1.63	\$1.89	\$2.16	\$2.43	\$2.69	\$2.96	\$3.23	\$3.49	\$3.76	\$4.03
	150	\$0.34	\$0.60	\$0.87	\$1.14	\$1.40	\$1.67	\$1.94	\$2.20	\$2.47	\$2.73	\$3.00	\$3.27	\$3.53	\$3.80	\$4.07
Δ	EM ²⁰⁰	\$0.38	\$0.64	\$0.91	\$1.18	\$1.44	\$1.71	\$1.98	\$2.24	\$2.51	\$2.78	\$3.04	\$3.31	\$3.58	\$3.84	\$4.11
	250	\$0.42	\$0.68	\$0.95	\$1.22	\$1.48	\$1.75	\$2.02	\$2.28	\$2.55	\$2.82	\$3.08	\$3.35	\$3.62	\$3.88	\$4.15
	300	\$0.46	\$0.72	\$0.99	\$1.26	\$1.52	\$1.79	\$2.06	\$2.32	\$2.59	\$2.86	\$3.12	\$3.39	\$3.66	\$3.92	\$4.19
	350	\$0.50	\$0.76	\$1.03	\$1.30	\$1.56	\$1.83	\$2.10	\$2.36	\$2.63	\$2.90	\$3.16	\$3.43	\$3.70	\$3.96	\$4.23
	400	\$0.54	\$0.80	\$1.07	\$1.34	\$1.60	\$1.87	\$2.14	\$2.40	\$2.67	\$2.94	\$3.20	\$3.47	\$3.74	\$4.00	\$4.27
	450	\$0.58	\$0.85	\$1.11	\$1.38	\$1.65	\$1.91	\$2.18	\$2.45	\$2.71	\$2.98	\$3.24	\$3.51	\$3.78	\$4.04	\$4.31
Capex (\$/kW)	500	\$0.62	\$0.89	\$1.15	\$1.42	\$1.69	\$1.95	\$2.22	\$2.49	\$2.75	\$3.02	\$3.29	\$3.55	\$3.82	\$4.09	\$4.35
	550	\$0.66	\$0.93	\$1.19	\$1.46	\$1.73	\$1.99	\$2.26	\$2.53	\$2.79	\$3.06	\$3.33	\$3.59	\$3.86	\$4.13	\$4.39
	600	\$0.70	\$0.97	\$1.23	\$1.50	\$1.77	\$2.03	\$2.30	\$2.57	\$2.83	\$3.10	\$3.37	\$3.63	\$3.90	\$4.17	\$4.43
	650	\$0.74	\$1.01	\$1.27	\$1.54	\$1.81	\$2.07	\$2.34	\$2.61	\$2.87	\$3.14	\$3.41	\$3.67	\$3.94	\$4.21	\$4.47
	700	\$0.78	\$1.05	\$1.31	\$1.58	\$1.85	\$2.11	\$2.38	\$2.65	\$2.91	\$3.18	\$3.45	\$3.71	\$3.98	\$4.25	\$4.51
	750	\$0.82	\$1.09	\$1.36	\$1.62	\$1.89	\$2.16	\$2.42	\$2.69	\$2.95	\$3.22	\$3.49	\$3.75	\$4.02	\$4.29	\$4.55
	800	\$0.86	\$1.13	\$1.40	\$1.66	\$1.93	\$2.20	\$2.46	\$2.73	\$3.00	\$3.26	\$3.53	\$3.80	\$4.06	\$4.33	\$4.60
	850	\$0.90	\$1.17	\$1.44	\$1.70	\$1.97	\$2.24	\$2.50	\$2.77	\$3.04	\$3.30	\$3.57	\$3.84	\$4.10	\$4.37	\$4.64
	900	\$0.94	\$1.21	\$1.48	\$1.74	\$2.01	\$2.28	\$2.54	\$2.81	\$3.08	\$3.34	\$3.61	\$3.88	\$4.14	\$4.41	\$4.68
	950	\$0.98	\$1.25	\$1.52	\$1.78	\$2.05	\$2.32	\$2.58	\$2.85	\$3.12	\$3.38	\$3.65	\$3.92	\$4.18	\$4.45	\$4.72
	1,000.00	\$1.02	\$1.29	\$1.56	\$1.82	\$2.09	\$2.36	\$2.62	\$2.89	\$3.16	\$3.42	\$3.69	\$3.96	\$4.22	\$4.49	\$4.76
								C	PEM							AEL

- Traditional alkaline is slated for 60-92% market share, nominally 80%, but entirely fails to serve grid needs (!)
- PEM off the bottom of the graph in reality CAPEX cost >\$1/kg and PGM use is intractable
- 29 Hard to properly cost higher power densities when low-cost electricity on the grid, 3x rated possible

Critical Catalysis Advantages in Alkaline


- Acidic electrolyzers have irreconcilable supply challenges due to iridium (& other PGM) + PFSA requirements
- **PFSA scaling arguably more problematic than iridium** *independent of PFAS issues* difficult & dangerous chemistry
- Alkaline chemistries have preferential kinetics & stability, offering a wealth of potential improvements


Source: US DOE 2022 "Water Electrolyzers and Fuel Cells Supply Chain Deep Dive Assessment"

Alkaline Electrolyte, the Superpower of AEMWE

- DI water limits 'reaction band' to ~2 μm
- ≥0.1 M KOH electronic connectivity enables a reaction band potentially mm-scale (e.g. VRFBs) + non-conducting oxides
- Markedly higher performances achievable
- Lower turnover frequency assists long-lived non-PGM
- 'Iridium equal' performances achieved in AEMWE

Weber & coworkers, 2021 - https://doi.org/10.1149/1945-7111/ac0019/meta Also see Danilovic & coworkers 2022 - https://doi.org/10.1149/1945-7111/ac4fed

% of current through liquid pathways at 0.5 A/cm²

Total volumetric reaction current

Exceeding Stability Targets

AEM Water Electrolysis with 2nd Gen Aemion+®

1) 9000+ hour AEM electrolyzer demonstration in large 50 cm² lab-scale cell

- First long-lived stability demonstration in industryrelevant conditions
- Degradation rate within 2024 EU target
 - Membrane: 0.034%/1000 hr
 - System: 0.52%/1000 hr
- System lifetime: >25000 hr, 3 years constant operation to 2.2 V cutoff

2) 5000 hours at 3x current density with no measurable degradation (whole system)

- Exceeding all 2024 EU Clean Hydrogen Joint Undertaking targets together at once
- Degradation rate
 - Membrane: 0.04%/1000 hr
 - System: 0.62%/1000 hr
- System lifetime: 55000 hr 4.4 years to 2.2 V cutoff

Moreno-Gonzalez et al. "One Year Operation of an Anion-Exchange membrane Water Electrolyzer..." J. Power Sources Adv., 2023; 19, 100109. https://doi.org/10.1016/j.powera.2023.100109 Ionomr Innovations Inc. – Confidential Information • 32 •

2.2

2.1

1.9

1.8

1.7

1.6

1.5

0

2000

€ ^{2.0}

voltage

2.5

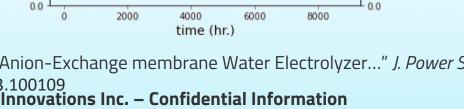
2.0

voltage (v) 10

0.5

18 µV/hr or 0.9%/1,000 hr

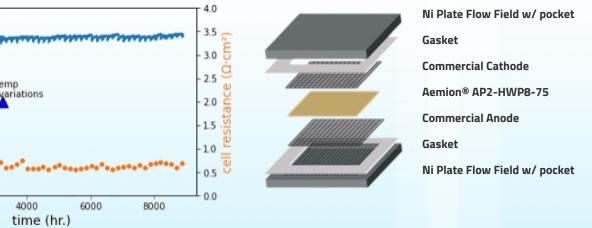
4000

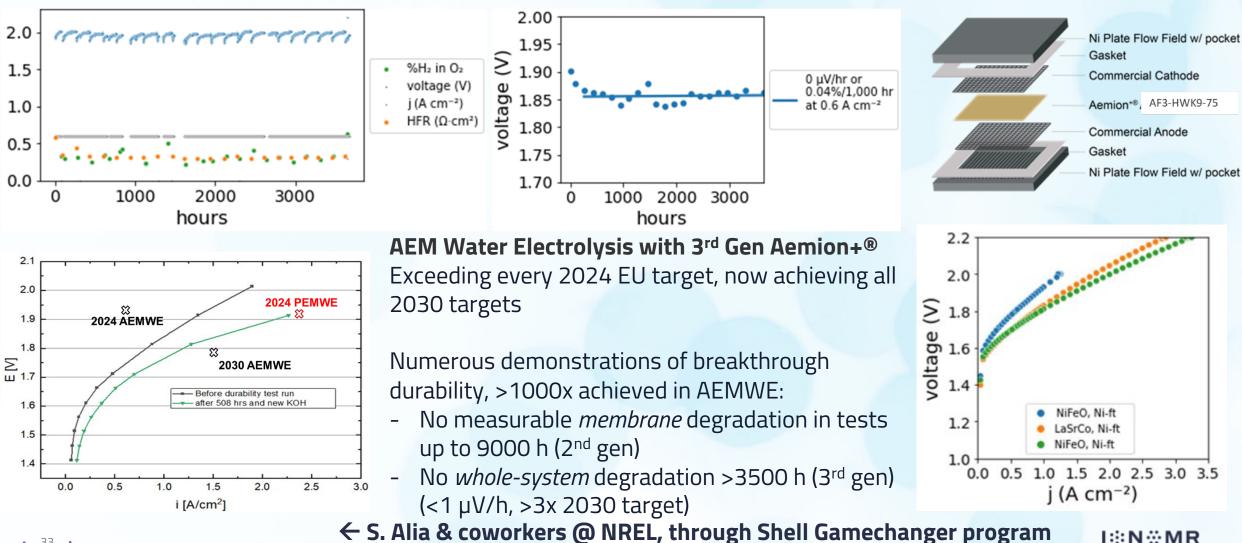

hours

17 µV/hr or 0.9%/1,000 hr HFRcorr

or 0.0338%/1,000 hr LFRcorr

6000


8000


Measured cell voltage

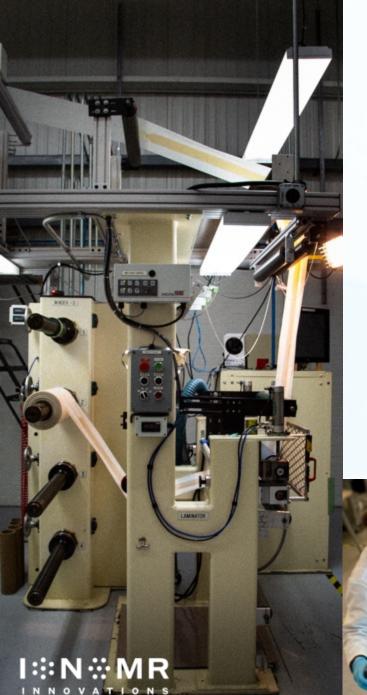
'Low frequency' resistances (metal component oxidation)

No membrane-associated losses

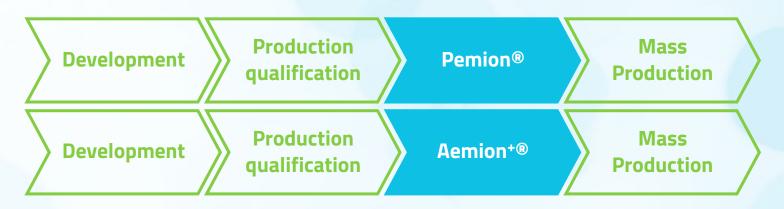
Breakthrough Durability & Performance

Ionomr Innovations Inc. – Confidential Information

Ionomr Providing AEMWE Reference Designs


Cost-effective, short lead-time design for efficient & scalable testing

- Specify all cell components for mesh electrode or CCM
- Ensures first-pass success for rapid adoption
- Small performance cell 5-10 cm²
- Large durability cell 50 cm²
- Cost-effective, especially for pressure
- <16 week lead time vs. 52+ weeks



Ionomr Innovations Inc. – Confidential Information

Ionomr Innovations Inc. – Confidential Information

Scaling Our Advanced Solutions

ISO 9001/14001 & IATF 16949

Quality & environment systems being implemented

ISO ISO

001:2015

ionomr.com

Thank You

Dr. Benjamin Britton Chief Technology Officer britton@ionomr.com +1 778-887-8558

Ionomr Innovations Inc.Ionomr Innovations, Inc.111-2386 East Mall285 Metro ParkVancouver, BC V6T 1Z3Rochester, New York 14623CanadaUSA

Accelerating Clean Cooling & Heating

www.atmosphere.cool

Alternatives to PFAS working fluids – natural refrigerants

ATMOsphere Thomas Trevisan

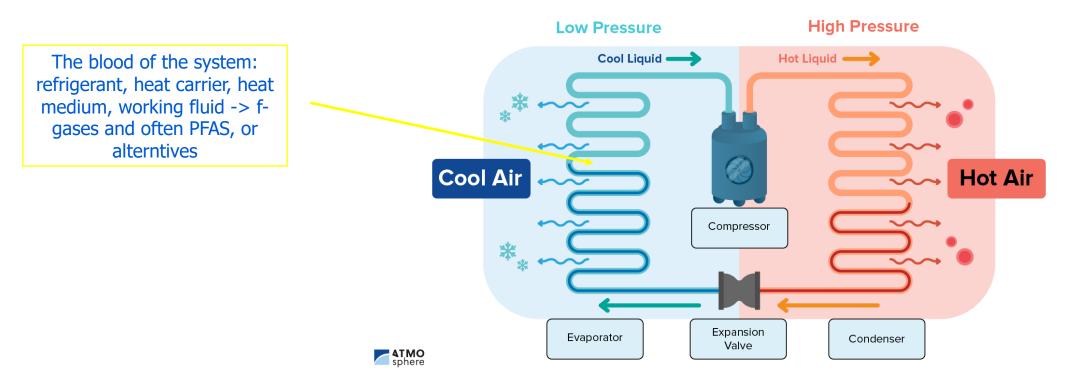
Deputy Manger for Public Affairs – Ozone, Climate, Energy and Chemicals

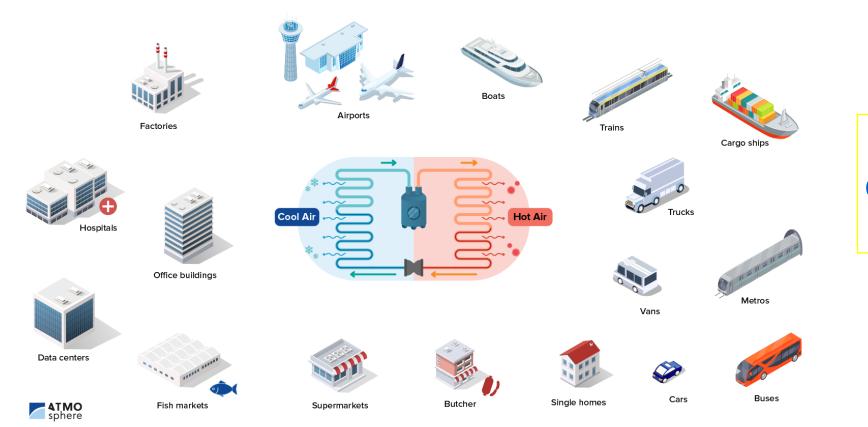
www.atmosphere.cool

About ATMOsphere

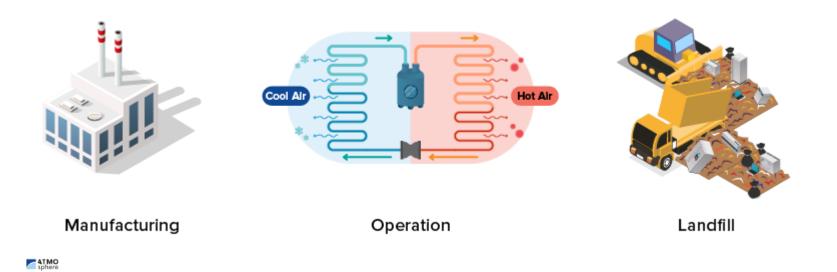
ATMOsphere is a global, independent market accelerator with a mission to clean up heating and cooling.

Whether you are an investor, an end-user, or a manufacturer, we have developed a comprehensive offering to assist you in transitioning to more sustainable technologies – globally and at scale.


Ever asked yourself how does your fridge work?


ATMO
sphereWhy are refrigerants important? The vapour
compression cycle

Vapor Compression Cycle



Where do we control mechanically temperatures? In more familiar places than we can think of...

Refrigerants can factually be everywhere!

ATMO where can f-gases that are PFAS leak from? sphere

The chemical treadmill of refrigerants

Mechanical control of temperatures – refrigeration, cooling and heating

Halogenated substances CFCs, HCFCs, HFCs, HFOs..

Ozone hole Global warming Persistent chemicals

- Substances not produced by nature -> hence, synthetic
- Useful in the past when environmental problems were less of a concern

Natural heat carriers

Carbon dioxide, hydrocarbons, ammonia, air, water

NO Ozone hole NEGLIGIBLE global warming NO persistent chemicals

- Substances that nature produce -> hence, natural
- Inherent concerns such as flammability and toxicity are well manged by industry

- RACHP: Refrigeration, air-conditioning and heat pumps
- HVAC&R: Heating, ventilation, air-conditioning and refrigeration

Availability across applications, regions, and temperatures

- F-gases that are PFAS used as working fluids are not essential
- Natural refrigerants are not a regrettable substitution
- Also development of systems without refrigerants – not-in-kind technologies

Sources: European Commission, German Environmental Agency - UBA, Norwegian Environmental Agency, UNEP, ATMOsphere

	CO ₂ / R744	NH ₃ / R717	нс	H ₂ O / R718	Air / R729
Domestic applications	\checkmark		\checkmark	\checkmark	
Commercial refrigeration	\checkmark	\checkmark	\checkmark	\checkmark	
Industrial refrigeration and heat pump systems	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Water and space heating heat pumps	\checkmark	\checkmark	\checkmark		
Chillers	\checkmark	\checkmark	\checkmark	\checkmark	
Vehicle air conditioning	\checkmark		\checkmark		\checkmark

But concretely, which natural refrigerants can be used in which application TODAY?

Some examples for stationary and mobile refrigeration equipment – e.g., supermarkets, butchers, delivery trucks, industrial facilities...

Sources: European Commission, German Environmental Agency - UBA, Norwegian Environmental Agency, UNEP, ATMOsphere

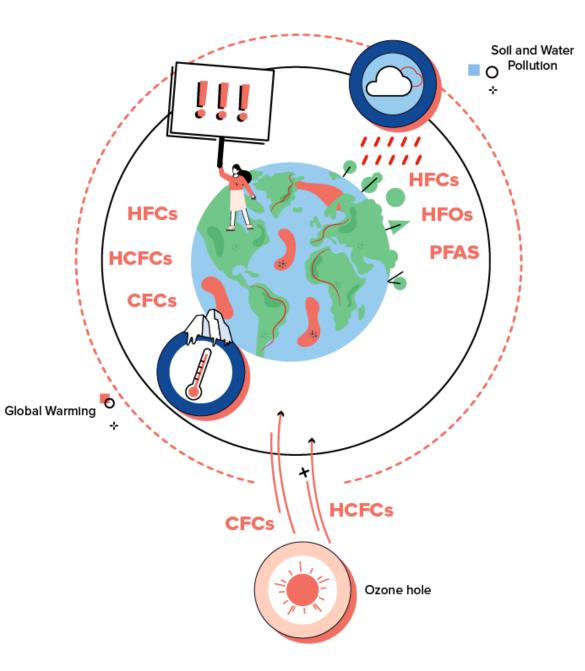
Refrigerants	Composition	Global warming potential (IPCC Sixth AR – 20 and 100 years)	PFAS (OECD)	TFA creation (UBA)
HFC-134a	Single component	4140 - 1530	Yes CF3-CH2F	Yes 7 – 20%
HFC-404a	Blend	7208 - 4728	Yes, HFC-125: CF3-CHF2 HFC-134a: CF3-CH2F HFC-143a: CF3-CH3	Yes No HFC-125 HFC-134a: 7 – 20% HFC-143a: < 10%
HFO-513a	Blend	1823 - 673	Yes, HFC-134a: CF3-CH2F HFO-1234yf: CH2=CF- CF3	Yes HFC-134a: 7 – 20% HFO-1234yf: 100%
R-744	Single component – carbon dioxide	1	Νο	Νο
Hydrocarbons	Single components – isobutane, propane, propene	Less than 1	Νο	Νο
R-717	Single component - ammonia	Νο	Νο	Νο

But concretely, which natural refrigerants can be used in which application TODAY?

Some examples for stationary cooling and heating equipment – e.g., heat pumps, ACs, chillers...

Sources: European Commission, German Environmental Agency - UBA, Norwegian Environmental Agency, UNEP, ATMOsphere

Refrigerants	Composition	Global warming potential (IPCC Sixth AR – 20 and 100 years)	PFAS (OECD)	TFA creation (UBA)
HFC-410A	Blend	4715 - 2255	Yes HFC-125: CF3-CHF2	No
HFC-32	Single component	2690 - 771	No	No
HFC-407C	Blend	4456 - 1907	Yes, HFC-125: CF3-CHF2 HFC-134a: CF3-CH2F	Yes HFC-134a: 7 – 20%
R-744	Single component – carbon dioxide	1	Νο	Νο
Hydrocarbons	Single components – isobutane, propane, propene	Less than 1	Νο	Νο
R-717	Single component - ammonia	Νο	Νο	Νο
R-718	Single component - water	Νο	Νο	Νο


But concretely, which natural refrigerants can be used in which application TODAY?

Some examples for mobile air conditioning – e.g., cars, buses, metros, trains, ships...

Sources: European Commission, German Environmental Agency - UBA, Norwegian Environmental Agency, UNEP, ATMOsphere

Refrigerants	Composition	Global warming potential (IPCC Sixth AR – 20 and 100 years)	PFAS (OECD)	TFA creation (UBA)
HFO-1234yf	Single component	1.81 - 0.501	Yes, HFO-1234yf: CH2=CF- CF3 -	Yes HFO-1234yf: 100%
HFC-32	Single component	2690 - 771	No	No
HFC-134a	Single component	4140 - 1530	Yes CF3-CH2F	Yes 7 – 20%
R-744	Single component – carbon dioxide	1	Νο	Νο
Hydrocarbons	Single components – isobutane, propane, propene	Less than 1	Νο	Νο
R-729	Single component - air	Νο	Νο	Νο

Enough!

Thank you for listening.

Find out more on

www.atmosphere.cool

TRANSENE COMPANY, INC.

10 Electronics Ave. Danvers Mass. - www.transene.com

ACKNOWLEDGMENTS

- Students: Rashmi Sharma, Chemistry; Shreyas Shelke, Plastics Engineering; Mohammad BagheriKashani, Plastics Engineering at UML
- Investigator: Prof. Ramaswamy Nagarajan, Plastics Engineering
- Research Manager: Dr. Gregory Morose, Toxics Use Reduction Institute
- TURI for funding academic research grant

COMPANY HISTORY

- Founded in 1965
- Manufacturer of <u>electronic chemicals</u>, diagnostic stains and reagents, analytical chemicals
- Factories in Danvers MA and Oakland CA, USA
- 33 Employees

Semiconductor fabs

DO

0101 000

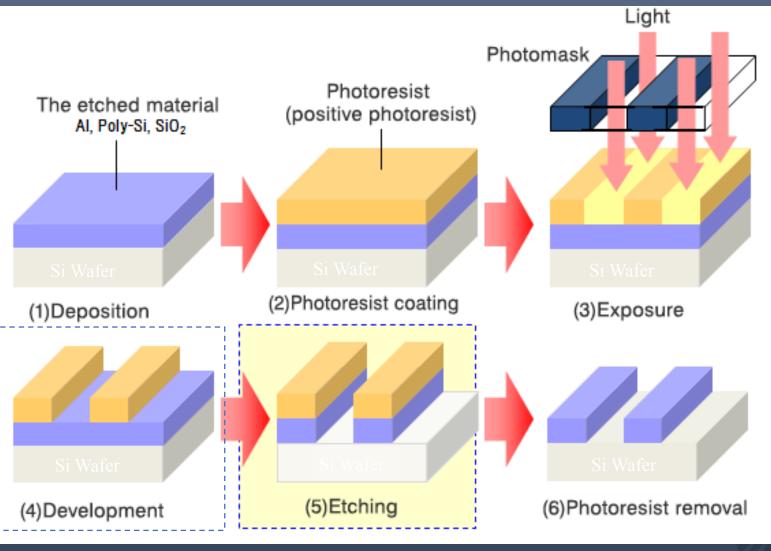
Ø.

 Chip manufacturers

WHO ARE ELECTRONICS CUSTOMERS?

Photronics

MEMS


Optics

ROLE OF SURFACTANTS IN SEMICONDUCTOR INDUSTRY (ETCHING PROCESS)

Desired Surfactant Properties:

- Increase the wettability of the etching solution
- ➢ Allow for release of gases
- ➢ No residue/contamination
- Effective at low concentration
- ➢ Low or no foaming

55

PFAS surfactants may be found in steps 4 - 6

PFAS REPLACEMENT REQUIREMENTS

Compatibility: Strongly acidic/oxidizing solutions - nitric acid, phosphoric acid etc.

Sufficient surface tension reduction: 75 to 25-30 mN/m with < 0.1wt% surfactant concentration

Contaminants: low sodium ions


Stability: > 1 year shelf life in solution

Low foaming

Cost

PFAS HISTORY AT TRANSENE

PFAS---PFAS---PFAS---PFAS---PFAS---PFAS

WHAT NEXT?

Learning with Purpose

Transene focused on sources we knew

IDENTIFYIN G OPTIONS

UML group had other options

Group technology Related materials

CUSTOMER ACCEPTANCE

Customers use the chemicals in different ways (spray, circulate, etc.) フフ

Easy targets—one-off purchases

Initial phase engendered some comments about foaming slight level reduction

No complaints? Let some customers know the change has been made

Still no complaints? Start qualifications with the big customers

Not a 100% success rate

CONCLUSIONS

- Strength of industry-academic collaboration
- PFAS replacement is viable
- Cost impact; sales impact
- Reduced liability

NICOLE HUEHN, 19 JUNE 2023

Performance and development of PFAS-free textile alternatives

SYMPATEX JOURNEY

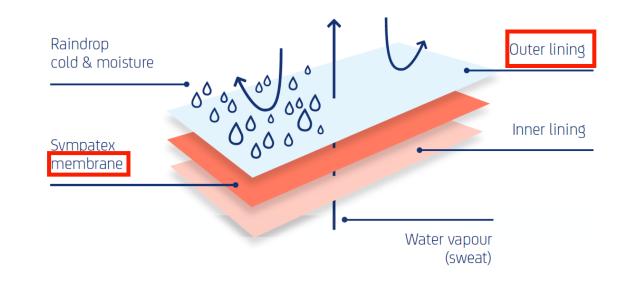
OVERVIEW

01 FUNCTIONAL FABRICS

02

PERFORMANCE OF PFAS-FREE FABRICS

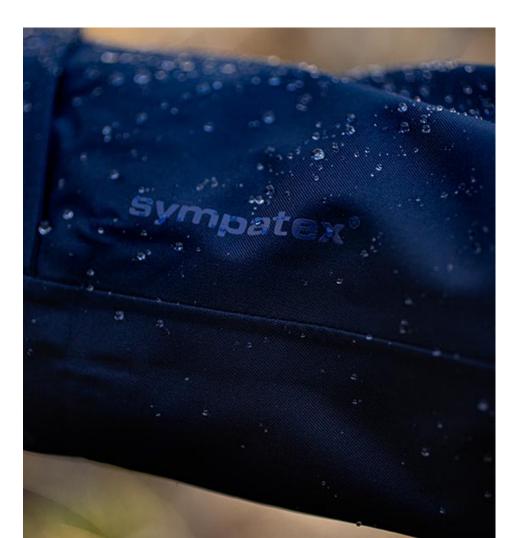
03


DEVELOPMENT OF PFAS-FREE FABRICS

BACKGROUND INFO

Functional fabrics for garment & shoes

- Outer lining
 - \rightarrow treatment
 - \rightarrow water repellence
- Barrier layer
 - \rightarrow membrane or coating
 - \rightarrow waterproofness


PERFORMANCE – PFAS VS. PFAS-FREE

WATER REPELLENCE

- Spray Test (ISO 4920)
- Bundesmann Test (ISO 9865)
- Rain Tower Test (EN 14360)
- → Slightly more frequent reimpregnation of fluorine-free DWR after washing could be necessary

WATERPROOFNESS

- Determination of resistance to water penetration (EN 1734)
- \rightarrow No difference, compact systems even better

PERFORMANCE - WATER REPELLENCE

Correct adjustment of all parameters:

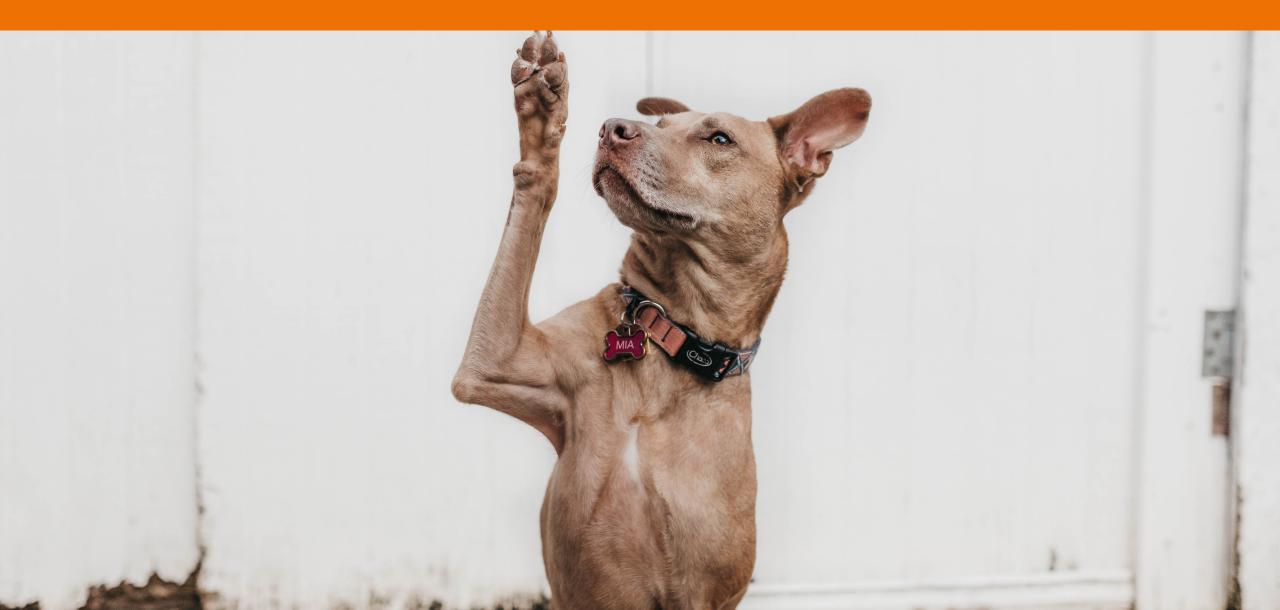
- 1. textile surface
- 2. DWR
- 3. Finishing paramter
- 4. Intended use

 \rightarrow same performance of PFAS-free and PFAS DWR:

10 min Bundesmann grade 5, even after 5x 40°C washing

PROTECTION AGAINST RAIN

DEVELOPMENT OF PFAS-FREE ALTERNATIVES PFAS-FREE WATER REPELLENCE


- 2008 1st fluorine free DWR
- 2012 increased demand from customers
- 2013 today: testing of market available DWRs

Currently **2 working groups** at Sympatex

- Performance comparison C0 C6
- Customer oriented issues:
 - Customer communication
 - Benchmark
 - different DWR on Sympatex laminate

LET'S DIVE INTO THE QUESTIONS!

CHEMSEC CHANNELS

- Website: chemsec.org
- PFAS Guide: pfas.chemsec.org
- SIN List: sinlist.chemsec.org
- Marketplace: <u>marketplace.chemsec.org</u>
- LinkedIn: <u>@chemsec</u>
- Twitter: <u>@chemsec</u>
- Instagram: <u>@</u>no_to_pfas
- Facebook: <a>@chemsecsweden

